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ABSTRACT Human action recognition plays a significant part in the computer vision and multimedia
research society due to its numerous applications. However, despite different approaches proposed to
address this problem, some issues regarding the robustness and efficiency of the action recognition still
need to be solved. Moreover, due to the speedy development of multimedia applications from numerous
origins, e.g., CCTV or video surveillance, there is an increasing demand for parallel processing of the
large-scale video data. In this paper, we introduce a novel approach to recognize the human actions. First,
we explore Apache spark with in-memory computing, to resolve the task of human action recognition in the
distributed environment. Secondly, we introduce a novel feature descriptor, namely, adaptive local motion
descriptor (ALMD) by considering motion and appearance, which is an extension of local ternary pattern
used for static texture analysis, and ALMD also generate persistent codes to describe the local-textures.
Finally, the spark machine learning library random forest is employed to recognize the human actions.
Experimental results show the superiority of the proposed approach over other state-of-the-arts.

INDEX TERMS Human action recognition, spark, adaptive local motion descriptor, spark MLIlib, random

forest.

I. INTRODUCTION

Recently, due to the rapid advancement of the Internet,
social media video services and intelligent CCTV for video
surveillance system, the multimedia data such as video is
increasing rapidly. Moreover, understanding video context
and identifying video types has an important significance in
the management of massive video data. In order to manage
these videos and provide important services to the users, it is
necessary to understand the human activities from the videos
automatically. There are many applications, which focus on
the action recognition, such as crowd behavior prediction,
video surveillance, human-machine interaction, and sports
game analysis.

Human action recognition is an intricate field since static
object characteristics, time, and motion features have to
be considered. Moreover, due to the environmental varia-
tions including different viewpoints, moving backgrounds
and large intra-class variations of different actions, the recog-
nition of human actions is even more difficult.

On the other hand, with the exponential growth of
the multimedia data and videos from the different origins
e.g. CCTVs, it increases the demand of distributed computing

to provide the services efficiently. For example, in every
minute almost 300 hours of video are uploaded [35]. Existing
video processing system uses the Hadoop platform [13]-[16]
in order to perform the distributed computing, however,
it shows low efficiency in the iterative computation, which
is essential in the machine learning. Moreover, it does not
support the real time computation.

In this work, we propose a novel approach to classify
the human actions on Apache Spark. Experimental results
in [20] shows that Apache Spark outperforms Hadoop.
In this work, all the videos are stored in the Hadoop dis-
tributed file system (HDFS) and dataset is loaded into a
Spark cluster, which is represented by resilient distributed
datasets (RDDs) [21]. In RDD partition, we perform frame
extraction from video data, background subtraction and
finally, Adaptive Local Motion Descriptor (ALMD) is intro-
duced to extract the motion feature. These RDD operations
are done in parallel using each worker node and provides
in-memory based computations. Adaptive Local Motion
Descriptor is inspired from Local Binary Pattern (LBP) [25],
and Local Ternary Pattern [26] which are only able to extract
the static texture information. But, our proposed descriptor

2169-3536 © 2017 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 5, 2017

Personal use is also permitted, but republication/redistribution requires IEEE permission.

21157

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0002-7718-5627

IEEE Access

M. A. Uddin et al.: Human Action Recognition Using ALMD in Spark

can extract both the texture and motion information by taking
two consecutive frames (i.e. previous frame and next frame)
to calculate the motion feature. Moreover, it can produce
consistent patterns in uniform and near-uniform regions. Vol-
ume Local Binary Patterns (VLBP) in [6] also extract the
dynamic information from the videos. However, it considers
co-occurrences of neighboring pixels in successive frames of
a volume at the similar time, which produces large feature
information when the number of neighboring pixels applied
is extended. Finally, in this paper, we have employed Spark
MLIib (Machine Learning Library) Random Forest to classify
the human actions in the distributed environment. In order to
assess the performance of our work, four benchmark datasets
are used, including the KTH dataset [10], UCF Sports
action dataset [11], [12], UT-Interaction dataset [31] and
UCF-50 dataset [32]. The key contribution of this paper is
summarized as follows:

« In this paper, we introduce a novel approach for the
human action recognition in spark.

o We propose a new dynamic descriptor, namely Adaptive
Local Motion Descriptor (ALMD) that not only describe
the texture but also motion. It also produces consistent
patterns against intensity fluctuation.

« To the best of our knowledge, this is the first effort to
classify the human actions in distributed environment
using Apache spark and Spark MLIlib Random Forest.

o Experimental result shows our proposed approach can
significantly increase the accuracy over state of the art
works.

The remaining paper is organized as follows. The follow-
ing part reviews related literature. In Sections III and IV,
we discuss the Architectural overview and proposed frame-
work. Datasets and experimental results are discussed in
Section V. Lastly, conclusions are drawn in Section VI.

Il. RELATED WORK

Many researches have been already done for human action
recognition. This section presents some prior related works
for human action recognition and distributed framework for
analyzing multimedia data, which is significant to proposed
framework.

Now-a-days, in the area of computer vision, researcher
started using distributed environment for performing analyt-
ical studies in multimedia data. Zhang et al. [13] proposed
a cloud-based framework that can deal with the intelligent
investigation and storage for video data. They used both the
Hadoop and Storm platform for the batch processing and
real-time processing respectively. However, their work only
focuses on video processing rather than any particular appli-
cation domain. Kim et al. [14] presented a distributed video
transcoding system utilizing Hadoop that converts numer-
ous video codec files into the MPEG-4 video files. They
implemented MapReduce framework and also applied the
multimedia processing library Xuggler. Tan and Chen [15]
proposed a method for the parallel video processing with
Hadoop based clusters including MapReduce. They showed
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that their method is capable to cope with large scale video and
significantly improved the performance. They implemented
the face detection, motion detection and tracking procedure
as case study to demonstrate their implementation on the
Apache Hadoop cluster. Liu et al. [16] proposed a distributed
environment for the video management applying Hadoop.
They also evaluated their work for the simultaneous I/O per-
formance, file uploading and downloading. Wang et al. [17]
investigated the MapReduce framework on the large scale
video data including video event detection, video retrieval
and image classification applications. However, most of the
related work for analyzing multimedia data in a distributed
framework focuses on Hadoop platform and no existing work
used Spark Machine learning library (Spark MLIib) [22] for
the classification of human actions.

Wang et al. [1] proposed a method to illustrate videos
by dense trajectories and also sampled the dense points
from every frame and traced those points using displacement
information. They also presented a new descriptor using the
motion boundary histograms. Lan et al. [2] introduced hier-
archical mid-level action elements to recognize the human
actions. They proposed an unsupervised approach to produce
this representation from videos. In [3], a video representa-
tion to recognize the actions using dense trajectories along
with motion boundary information was introduced by the
authors. They extracted the local motion feature of the video.
Yang et al. [4] proposed a novel salient foreground tra-
jectory (SFT) extraction method based on saliency detec-
tion to recognize the human actions. They also introduced
low-rank matrix recovery to learn the discriminating fea-
tures from complex video context. Baumann er al. [6]
applied Volume Local Binary Patterns (VLBP) for human
action recognition. They proposed various computation
approaches for volume local binary patterns. However,
in VLBP the size of feature vector is increased when
the number of neighboring points applied is extended.
Zhao and Pietikdinen [8] introduced dynamic texture
classification using Local Binary Pattern from three orthog-
onal planes (LBP-TOP). But, there are redundant fea-
ture inside the overlapping orthogonal planes, which
increases the computational complexity. Mattivi and Shao [7]
presented extended LBP-TOP to recognize the human
actions. In [9], Local Ternary Pattern from three orthog-
onal planes was presented to classify the human actions.
In LTP-TOP features extracted from the x-t and y-t planes
along with the information extracted using the standard LTP
(Local Ternary Pattern). Chen et al. [5], the authors proposed
anovel feature extraction method, namely Histograms of Ori-
ented Gradients from three orthogonal planes (HOG-TOP)
to get the dynamic information from the video data.
Xiao and Song [34] presented hierarchical dynamic Bayesian
network to identify the human actions.

lll. ARCHITECTURAL OVERVIEW
Hadoop is an open source programming framework based
on MapReduce. It provides automatic parallel, distributed
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computing, task management and fault-tolerant mecha-
nism. Hadoop consists of three parts: MapReduce, HDFS
and YARN. MapReduce is parallel computation model,
HDFS (Hadoop Distributed File System) is aimed to support
large datasets on commodity hardware and YARN is used to
manage the resources and schedule jobs. However, Hadoop
is based on the acyclic data flow model. Due to this, it shows
poor performance on iterative tasks which are common when
handling the multimedia data. On the other hand, Spark [20]
is a distributed framework which is designed for low latency
and also support the iterative computation of the data. Spark
provides a fault tolerant and efficient memory abstraction
mechanism using Resilient Distributed dataset (RDD) [21]
that are stored in memory. An RDD in Spark is fundamentally
an unchangeable distributed collection of objects. In order to
compute a result, in Spark, all work is expressed as either
making new RDDs, altering existing RDDs, or calling pro-
cesses on RDDs. Every RDD is divided into multiple parti-
tions, which can be computed on several nodes of the cluster.
It provides in-memory processing execution, so it stores the
state of memory as an object through the jobs. Moreover,
Spark can outperform Hadoop by 10x in iterative machine
learning tasks [20]. Spark MLIib [22] is an open-source
distributed machine learning library, which contains fast
and scalable employments of standard approaches, includ-
ing classification, clustering, regression, and dimensionality
reduction. Fig. 1 shows the architecture for distributed envi-
ronment to recognize the human actions. In our work, we have
used the Apache Spark for distributed computing and Spark
MLIib for classifying the human actions. On the other hand,
Yarn is employed for managing the resources and HDFS is
used for storing the video data and motion features from video
data.

Spark MLlib

(Machine Learning)

Apache Spark

YARN

Hadoop Distributed File System (HDFS)

FIGURE 1. Distributed environment architecture to recognize the human
actions.

IV. PROPOSED FRAMEWORK

In this section, we explain the proposed method which rec-
ognizes the human actions from videos. Fig. 2 shows the
proposed framework for human action recognition in the
distributed environment. In this paper, a novel approach
for human action recognition is presented utilizing adaptive
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FIGURE 2. Proposed framework for Human action Recognition.

local motion descriptor in spark. Here, motion features are
extracted by extending local ternary pattern descriptor and
then Spark MLIib Random Forest classifier is employed to
recognize the human actions.

A. PREPROCESSING

Preprocessing step includes frame extraction from video,
frame conversion from RGB color model to gray level, frame
resize and background subtraction. At first, all the videos
are saved in the Hadoop Distributed File System (HDFES),
then the dataset is loaded into a Spark cluster. Partitions of
this dataset are cached into worker nodes. The information
of all the loaded data partitions is represented by an RDD.
RDD operations are accomplished in parallel using each
worker node. In each partition, frames are extracted from the
videos and then these frames are resized to 854 x 480 for the
KTH dataset, 720 x 404 for the UCF sports action dataset,
720 x 480 for the UT-Interaction dataset, and 320 x 240 for
the UCF-50 dataset. After that, frame conversion is employed
to change the RGB color to gray scale. Finally, background
subtraction is done, which is applied to distinguish fore-
ground object from background part. Here the foreground
object is human. In, background subtraction frames are sub-
tracted from their background part. To subtract background
from a recent frame Gaussian probability distribution func-
tion is employed [23].

RN —(C(x,y) = Bi(x, y))
P<C<x,y>)—ﬁ; T o ) (1)
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Where, the probability of belonging background of a pixel
in (X, y) position of the current frame is denoted by
P(C(x, y)), N is the number of background frames,
B; (%, y) and C(x, y) is the intensity of pixel in (x, y) point of
the i background frame and the current frame respectively.
Fig. 3 demonstrates an example of background subtraction.

FIGURE 3. Background Subtraction.

B. FEATURE EXTRACTION USING ADAPTIVE LOCAL
MOTION DESCRIPTOR

In this step, dynamic texture features are extracted from the
frames using the proposed Adaptive Local Motion Descrip-
tor (ALMD). It produces consistent patterns against inten-
sity fluctuation. By considering the dynamic selection of
threshold value makes our approach flexible enough so that
it can adapt with different real-time environments problem
e.g. illumination variations and noise. In each worker node
features are extracted. Motion is one of the important feature
to recognize the human actions from videos, which identi-
fied by the alteration of pixel intensity values between two
consecutive frames. Our proposed method, adaptive local
motion descriptor describes the characteristics of the motion,
which is inspired from the Histogram of Optical flow [24]
and Local Ternary Pattern [26]. Dissimilar activities in the
videos have different gray value changes between frames with
respect to time. Therefore, we can distinguish the actions
efficiently.

Local pixel information from each frame can be computed
using Local Binary Pattern [25]. The basic Local Binary
Pattern (LBP) computed by changing the pixel values of
an image or frame by thresholding a circular neighborhood
area [15]. The LBPpr generates 2P different output codes.
LBP on pixel (x, y) is calculated as,

P—1
LBPpg(x,y) = ) sev —gc2" ()
1,g>0
Where, s(q) = 1= ) (3)
0, otherwise

Here, P and R are the total number and the radius of
the neighboring pixels and gy is neighbor pixel and g¢ is
center pixel. Fig. 4 illustrates the LBP operator. However,
the weakness of the LBP operator is that, it is susceptible to
noise, with slight variation in the intensities of the neighbors
can completely change the resultant binary code and therefore
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FIGURE 4. An LBP operator.

it fails to produce the consistent patterns in uniform areas,
where the difference between the center and the neighbor
gray levels is ignorable. Moreover, LBP cannot describe the
motion information of a video, it can only able to explain the
static texture information. In order to resolve this issue, we
propose adaptive local motion descriptor by comparing two
consecutive frames and taking the median of the neighbor
pixels as the threshold value and extending the Local Ternary
Pattern [26], which can provide dynamic motion information
as well as can produce steady pattern in uniform and near-
uniform regions.

The Local Ternary Pattern (LTP) [26] is computed similar
to LBP. However, the main difference is, it considers a new
bit to manage the intensity variations. The LTP at a pixel C is
calculated by the following equation,

P—1
LTPpr(x.y) = D s(gn —8c)3" @
1, ifg>«a
Where,s(q) = — 31, ifg=<a 5)

0, otherwise

Fig. 5, illustrates an example of the LTP operator. Here,
the value of threshold « is 5. After that, to reduce the size of
the feature vector, an LTP code is generally divided into two
patterns i.e., upper and lower pattern and these two patterns
are used for building two histograms independently. Finally,
these two histograms are combined to represent the feature
vector.

Our proposed method Adaptive Local Motion Descrip-
tor (ALMD) is computed similarly to LTP. At first, it takes
two consecutive frames (i.e. previous frame and next frame)
to calculate the motion feature. Then, the frames are split into
small cells and for two cells at the same place, the neighbor
pixels are compared with the next frame center pixel value
and threshold value, which is chosen by averaging the median
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FIGURE 5. An LTP operator.

values, computed from the absolute difference between the
center pixel and its neighboring pixels of the two respective
frame cells.

After that, the generated code is divided into the upper
pattern and lower pattern for both the frames. After that,
two upper patterns and two lower patterns from the previ-
ous frame and next frame are combined by applying the
XOR (exclusive OR) operation. The equations (6)—(8)
describe generation of ALMD code.

Here, n and r are the total number and the radius of
the neighboring pixels and g, is the neighbor pixels of the
previous frame, g, is the neighbor pixels of the next frame,
gp. 1s the center pixel of the previous frame and g, is the
center pixel of the next frame. Ug is for the upper pattern,
Lgq is for the lower pattern and X is the average of the previous
frame median Xp and next frame median X7, where xp is
the median of |g,, — gp.| values and X7 is the median of
|8y, — &n.| values. Fig. 6, demonstrates an example of the
ALMD operator, where, x = (xp +xn) /2 = (20 4 30)/
2 = 25. Such a selection of X makes our method flexible
enough so that it can adapt with different real-time environ-
ments problem i.e. illumination variations and noise.

On the other hand, algorithm 1 shows parallel processing of
the human action recognition in spark. Here parallel process-
ing is done on each tuple of RDD. The algorithm describes the
frame extraction, background subtraction and motion feature
extraction using ALMD (Adaptive Local Motion Descriptor).
Background subtraction is done by applying equation (1)
and motion feature is extracted using ALMD by applying
equation (6, 7, and 8), as shown at the bottom of this page.

Algorithm 1 Feature Extraction
Input: RDD [Video_Name N, Video_Data D]
Output: RDD [Video_Name N, Feature_Vector V]
for all (N, D) € RDD[N, D] parallel do
flatMap stage:
BI <— Background_Image
for i = 1 to NumberOfFrames-1
a <— DJi]
b <«— D[i+ 1]
Ba <— apply BackgroundSubstraction(a, BI)
Bb <— apply BackgroundSubstraction(b, BI)
V[i] «<— apply Upper_ALMD(Ba, Bb)
Qli] «— apply Lower_ALMD(Ba, Bb)
end for
add (N, V, Q) to result RDD
end for

C. RANDOM FOREST FOR CLASSIFICATION
Random Forest is an ensemble classifier employing several
decision trees that is applied for classification or regression.
There are many advantages of random forest that includes
production of a highly precise classifier and also can work
on big datasets efficiently. The Random Forest algorithm was
developed by Breiman [27]. In [28], the idea of “bagging”
was proposed and then the random feature selection was
presented by Ho [29], [30].

A Random Forest is an ensemble classifier involving
a group of tree-structured classifiers {r (n, Ok),k=1....L}
where the @ are independent distributed random trees. Here
every tree contributes with a vote for the final classifica-
tion of input n. Similar to Classification and Regression
Tree (CART), the Gini index for computing the final output
in every tree is applied in random forest. The output of each
tree is combined and voted by weighted values to determine
the final class. Finally, majority votes is considered to take
the final decision.

Every tree gives a vote on a class for the input feature n. The
class probabilities are determined by majority voting, which
can be written as below,

1 L
pm) =argmax (73 Fro=) ©)

The decision function r¢ (1) returns the result class c,

Finally, flatMap function returns the feature vectors from the Frome = Lif rnc(n)=c (10)
videos. K= 0, otherwise
n—1 /
For Upper Pattern, ALMD,, , (xe,ye) = ) AUd(gp; — 8n.) ® Udlgy, — 8n)}2 ©)
n—1
For Lower Pattern, ALMD,, , (x¢, yc) = Zz:o {Lq(gp, — &n.) ® La(g,, — gn)}2' (N

Where, Uq (a) =
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0 otherwise

ifa>x 1 ifa<—x

and Lqg (a) = { 8)

0 otherwise
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FIGURE 6. An example of Adaptive Local Motion Descriptor.

In Spark MLIib, multiple sub-trees of Random Forest are
trained in parallel as each tree in a Random Forest is trained
separately. Spark MLIib Random Forest takes the feature
vector as input from HDFS which is generated by ALMD.
A different subsample of the data is employed in random
forest to train each tree. In place of replicating data explicitly,
we save memory by applying a TreePoint structure which
saves the number of copies of each occurrence in each sub-
sample. During training, each node that requires to be split
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is inserted onto a queue. Some nodes are bring out of the
queue considering the volume of memory needed for their
necessary computation. Then the worker produces one pass
over its subset of instances. The worker gathers information
about dividing for each (tree, node, feature, split) tuple and
for each node, the information for that node are accumulated
to a specific worker. After that, the best (feature, split) pair is
selected by the designated worker. Finally, the master gathers
all informations about splitting nodes and updates the model.
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V. EXPERIMENTAL RESULTS AND ANALYSIS

In order to evaluate the performance of human action recog-
nition on spark, we apply Hadoop spark cluster to conduct
the experiments with benchmark datasets of different scales.
In our experiments, the cluster includes 4 nodes, one is the
master node and all of them are worker nodes. Each node
has the same configuration, with 4 cores, 32GB memory,
3.0GHz, Hadoop version is 2.7.1, while spark version is 1.6.2
and spark MLIib version is 1.3.0. Four benchmark datasets
are employed for recognizing human actions, including the
KTH dataset [10], UCF Sports action dataset [11], [12],
UT-Interaction dataset [31] and UCF-50 dataset [32].

A. KTH DATASET

The KTH dataset [10] covers 600 videos including six
human action classes: boxing, clapping, jogging, walking,
running and waving, with every action class consisting
of 100 sequences done by 25 persons in four different situ-
ations. An example of KTH dataset, which is taken from [10]
is shown in Fig. 7. In our experiment for KTH dataset,
470 videos are applied for training and 130 videos are applied
for testing.

FIGURE 7. Sample frames from the KTH dataset [10].

B. UCF SPORTS ACTION DATASET

The UCF Sports action dataset [11], [12] contains 150 video
sequences with the resolution of 720 x 480. It covers
10 human actions that include diving, golf swing, riding
horse, walking, running, kicking, lifting, skateboarding,
swing-bench, and swing-side. These actions are performed in
different real environments that includes different viewpoints
and also covering a lot of camera motion. An example of
UCF Sports action dataset is presented in Fig. 8. In our
experiment for UCF Sports action dataset, 100 videos are
applied for training and 50 videos are applied for testing.

C. UT-INTERACTION DATASET

The UT-Interaction dataset [31] consist of 20 video
sequences. Each of the videos contains continuous accom-
plishments of 6 action classes that include shake-hands, point,
hug, push, kick and punch. The resolution of all the videos
is 720 x 480. Numerous individuals with 15 different cloth-
ing conditions perform actions in the videos. An example
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FIGURE 8. Sample frames from the UCF Sports action dataset [11].

FIGURE 9. Sample frames from the UT-Interaction dataset [31].

FIGURE 10. Sample frames from the UCF-50 dataset [32].

of UT-Interaction dataset is shown in Fig. 9. In our experiment
for UT-Interaction dataset, each video sequence is divided
into different categories. So, for 20 video sequences total
120 videos are created. In the experiment, 90 videos are
applied for training and 30 videos are applied for testing.

D. UCF-50 DATASET
The UCF-50 dataset [32] is one of biggest action datasets
that consist of 6681 videos including 50 action categories.
All the videos are collected from the YouTube. The videos
are divided into 25 groups covering 4 action clips from
each group. The resolution of all the videos is 320 x 240.
An example of the UCF-50 dataset is shown in Fig. 10. In our
experiment for UCF Sports action dataset, 5000 videos are
applied for training and 1681 videos are applied for testing.
Time taken in seconds for feature extraction, training and
testing for the KTH dataset, UCF Sports action dataset,
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FIGURE 11. Comparison of the accuracy for each class using VLBP with
eight neighbors [6] and ALMD (proposed approach) on the KTH dataset.

TABLE 1. Time (in seconds) required for the KTH dataset.

Nodes 1 2 3 4
Feature Extraction 2728s 1978s 1319s 812s

Training 76s 52s 34s 21s

Testing 62s 48s 31s 17s

TABLE 2. Time (in seconds) required for the UCF sports action dataset.

Nodes 1 2 3 4
Feature Extraction 672s 502s 368s 211s
Training 20s 17s 14s 11s
Testing 19s 15s 13s 9s

TABLE 3. Time (in seconds) required for the UT-Interaction dataset.

Nodes 1 2 3 4
Feature Extraction 642s 486s 329s 1955
Training 19s 16s 13s 10s
Testing 18s 13s 12s 3s
TABLE 4. Time (in seconds) required for the UCF50 dataset.
Nodes 1 2 3 4
Feature Extraction 26724s 17916s 11619s 76355
Training 615s 418s 246s 171s
Testing 240s 173s 112s 68s

UT-Interaction dataset and UCF-50 dataset are illustrated
in Table 1, 2, 3, and 4 respectively. Here, when number
of node is increased, it takes less processing time, so the
performance is increased.

All classification scores are achieved with a Random forest
classifier. The performance of the classification is represented
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FIGURE 13. Comparison of the accuracy for each class using VLBP with
eight neighbors [6] and ALMD (proposed approach) on the UT-Interaction
dataset.

as follows:
TP + TN
TP +TN + FP + FN

Where, TP (True positive) is accurately recognized,
TN (True negative) is accurately rejected, FP (False positive)
is inaccurately recognized, and FN (False negative) is inac-
curately rejected.

With the proposed methodology, the average recogni-
tion rates on the KTH dataset, UCF sports action dataset,
UT-Interaction dataset and UCF-50 dataset are 92.3%,
92.8%, 91.67%, and 90.1% respectively. The confusion
matrices on the UCF sports action dataset, KTH dataset, and

(11)

Accuracy =
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TABLE 5. Confusion matrix for the UCF sports action dataset.

o0 = ) o0 80 2 ! ! 2
£l 52 5 | £ | £E F | 5| 22| £ £
2 O 2| = b= = E E 2|l 22| 20| =
a w| ¥ - &~ & ng|l wR| @ =
Diving 1 0 0 0 0 0 0 [005 |003 0
Golf 0 [ 0.90 0 0 0 0 002 0 0 0.03
Swing
Kicking 0 0 [088 0 0 | 005 0 0 0 | 005
Lifting 0 0 0 1 0 0 0 0 0 0
Riding 0 | 005 0 0 1 0 0 0 0 0
Horse
Running | 0 0 007 | 0 0 | 088 0 0 0 0.05
Skate- 0 | 0.05 | 006 0 0 0 | 083 0 0 0.05
Boarding
Swing- 0 0 0 0 0 0 0 [095 [ 0.06 0
Bench
Swing- 0 0 0 0 0 0 0 002 [ 092 o
Side
Walking | 0 | 004 | 0 0 0 005 o0 0 0 0.92
TABLE 6. Confusion matrix for the KTH dataset.
90 87 86.25 88.19 8288 5667
2|12 |2 |2 |2 |2 %
= I - T 7 S
= =] oh < 53 S <
= & < = o A > 60
Q
S 50
Walking | 093 | 0.05 | 0.02 0 0 0 g 40
. 2 30
Running | 0.04 | 090 | 0.06 0 0 0 20
Jogging 0.02 0.07 0.91 0 0 0 10
: 0
Waving 0 0 0 092 | 0.05 | 0.03 S N - PN
R AP G P U
Clapping 0 0 0 0.05 | 091 | 0.04 L L O O ¥
Q’ Q' (6, 6, @b,
~ ¥V O &
Boxing | 0 0 0 0o | 003 | 097 ¥ S
¥ <
&
METHOD

UT-Interaction dataset are presented in Table 5, 6 and 7.
For the KTH dataset, boxing and walking shows better per-
formance than the other actions, for the UCF sports action
dataset, lifting and diving shows better performance com-
pared to the other actions and for the UT-Interaction dataset
hug and kick shows better performance compared to the other
actions.

On the other hand, for the KTH dataset, running and
jogging shows lower accuracy as both the action are almost
similar to each other. Jogging is typically a kind of running
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FIGURE 14. Comparison between proposed approach and existing works
on the KTH dataset.

with a steady speed. For UCF action dataset, skateboarding
shows lower accuracy due to the complexity of skateboarding

videos.
Comparison of the accuracy for each class using VLBP
with eight neighbors [6] and ALMD (proposed approach)
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TABLE 7. Confusion matrix for the UT-Interaction dataset.

Shake- Point Hug Push Kick Punch
hands
Shake- 0.85 0.15 0 0 0 0
hands
Point 0.15 0.85 0 0 0 0
Hug 0 0 1 0 0 0
Push 0 0 0 0.90 0.00 0.1
Kick 0 0 0 0 1 0
Punch 0 0 0 0.1 0 0.90

100 882 g3 go.q 9137 928

ACCURACY (%)
N
OO

METHOD

FIGURE 15. Comparison between proposed approach and existing works
on UCF sports action dataset.

100
90 85.7 90.1

80 76.9

70
60
50
40
30
20
10

ACCURACY (%)

Reddy etal. Wangetal. Proposed
[32] [33] Method

METHOD

FIGURE 16. Comparison between proposed approach and existing works
on the UCF-50 dataset.

on the KTH dataset and UT-Interaction dataset illustrated
in Fig. 11 and Fig. 13 respectively. Fig. 12 shows the com-
parison of accuracy for each class using SFT [4] and ALMD
(proposed approach) on the UCF sports action dataset.
Fig. 14, Fig. 15 and Fig. 16 shows the comparison between
our proposed method and other state-of-the-art works for
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the KTH dataset, UCF sports action dataset and UCF-50
dataset respectively. From these figures, we can see that our
work outperforms other state-of-the-art works. On the KTH
dataset, the average accuracy of proposed method is superior
to LBP-TOP [8] and VLBP with eight neighbors [6] by
6.05% and 5.3% respectively. On the other hand, for the UCF
sports action dataset, our approach slightly outperforms the
SFT (salient foreground trajectories) [4] by 1.43% and greatly
outperforms the Hierarchical Mid-level Action Elements [2]
by 9.2%.

VI. CONCLUSION

In this paper, we presented a novel approach to recognize
the human actions. We explored Apache Spark and Spark
MLIib to solve human action recognition problem. Moreover,
we also introduced a novel feature descriptor, Adaptive Local
Motion Descriptor (ALMD) to extract both the texture and
motion feature, which is also able to generate persistent pat-
terns. Finally, experimental results showed that our proposed
approach outperforms other state-of-the-art works. In the
future, we will employ Kafka and Spark Streaming in order
to solve the real time human action recognition problem from
CCTV video.
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